Semanticsegmentation相关论文
针对传统裂缝图像分割方法不能准确提取混凝土表面裂缝的难题,提出了一种改进的轻量级全局卷积网络的路面裂缝图像分割模型。根据......
点云作为一种重要的3D数据类型,随着3D采集技术的发展已被广泛用于多个应用场景。深度学习因其处理大型数据集的高效性、提取特征......
深度学习和自注意力机制的应用,使语义分割网络的性能得到了大幅提升。针对目前自注意力机制将每个像素的所有通道看作一个向量进......
视觉里程计在智能机器人、自动驾驶等领域有着广泛的应用。但是基于有限视场(FOV)针孔相机的经典视觉里程计算法容易受到环境中运......
针对遥感建筑物实时检测中深度卷积网络资源消耗大和硬件移植难的问题,提出一种基于二值与浮点数混用方法的语义分割网络MBU-Net。......
针对机载LiDAR点云中几何结构复杂和不同地物尺度变化大导致小目标点云分类准确率低的问题,本文提出了一种基于通道注意力机制进行......
为了实现定量化应用目标,高精度的云层检测已成为遥感数据预处理的关键步骤之一。然而,传统的云检测方法存在特征复杂、算法步骤多......
基于U-Net模型,提出了一个全卷积网络(FCN)模型,用于高分辨率遥感图像语义分割,其中数据预处理采用了数据标准化和数据增强,模型训......
农村地区遥感图像语义分割是进行城乡规划、植被以及农用地检测的基础。农村地区高分辨率遥感图像含有较为复杂的地物信息,对其进......
针对自动化迷彩目标发现学习中有效样本严重不足的问题,借鉴AlphaGo的技术思想,提出了一种基于样本模拟的深度神经网络仿真训练方......
近年来,深度传感器和三维扫描仪的普及,使三维点云得到了快速发展。点云语义分割作为三维场景理解和分析的关键步骤,受到了研究者......
提出了一种基于语义目标匹配的三维跟踪注册方法。通过改进的单发多框检测(SSD)深度卷积神经网络对图像进行语义分割,获取场景中不......
为改进传统人工方法对熔覆区域裂纹检测耗时、准确率低的现状,提出了一种融合注意力模型的熔覆区裂纹自动识别方法,以便对裂纹进行......